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Abstract. The real part of the time-dependent ac susceptibility of the short-range Ising spin glass in a
transverse field has been investigated at very low temperatures. We have used the quantum linear response
theory and domain coarsening ideas of quantum droplet scaling theory. It is found that after a temperature
quench to a temperature 71 (lower than the spin glass transition temperature Ty) the ac susceptibility
decreases with time approximately in a logarithmic way as the system tends to the equilibrium. It is shown
that the transverse field of “tunneling” has unessential effect on the nonequilibrium dynamical properties
of the magnetic droplet system. The role of quantum fluctuations in the behavior of the ac susceptibility

is discussed.

PACS. 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling,
etc.) — 75.10.Nr Spin-glass and other random models — 75.50.Lk Spin glasses and other random magnets

1 Introduction

Aging phenomena and nonequilibrium slow dynamics
have been investigated during last years in many mate-
rials with glassy properties such as spin glasses, polymer
glasses, orientational glasses, simple liquids like glycerol
and gels [1-12]. These systems are characterized by the
existence of a nonequilibrium low temperature phase and
aging [13-15]. Despite a great progress towards the under-
standing of nonequilibrium dynamics, some problems re-
main open. One of them is the investigation of the very low
temperature nonequilibrium dynamics in quantum spin
glasses, namely the nature of the quantum channels of
relaxation and the behavior of a quantum glassy system
subjected to a periodic driving force, aging at very low
temperatures. The natural basis for the interpretation of
aging is based on coarsening ideas of a slow domain growth
of a spin-glass type ordered phase [6,9,15]. For theoretical
studies of quantum fluctuations in disordered media there
is a variety of techniques including replica theory, renor-
malization group, Monte Carlo simulations, the Schwinger
and Keldysh closed-time path-integral formalism and oth-
ers [26-38]. A large attention in the last decade was de-
voted to the spin glasses representing a model system for
the study of nonequilibrium dynamics [39-45].

In this paper we investigate the real-time nonequilib-
rium dynamics in a d-dimensional Ising spin glass in a
transverse field in terms of the droplet model at very low
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temperatures. We calculate the ac susceptibility as a func-
tion of the time elapsed after a thermal quench and of the
frequency of the driven field. We show that quantum ef-
fects insignificantly alter the nonequilibrium dynamics in
the spin glass phase at very low temperatures.

In ac susceptibility measurements performed on clas-
sical spin glasses the magnetic response of the system to
a small ac magnetic field after quenching shows aging ef-
fects. This response depends on its thermal history and on
the time interval the system has been kept at a constant
temperature in the glass phase.

It is assumed that isothermal aging is a coarsening
process of domain walls, and the temporal ac susceptibility
(real part x' and imaginary part x”) at a given frequency
of the ac magnetic field w at time t after the quenching
scales as [17,24,35]

X'(w,t) = Xeg(w) [L(l/w)]d_e, (1)

X" (w,1) R(t)

N(8) = Xeg®) {L <1/w>} ” 2)

X' (w, 1) R(t)

for |lnw| < Int if L(1/w) is proportional to Inw™!
and R(t) is proportional to Int. In the above equations
0 < (d—1)/2, L(1/w) is the typical size of the droplet
being polarized by the ac field, and R(t) is the typical
domain size. L and R may change according to a log-
arithmic growth law or to an algebraic one [41,45]. It
must be clear that both laws cannot hold simultaneously
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for the same material. The final test is experimental and
no decisive evidence in favour of one hypothesis or the
other is available yet. The logarithmic growth law (like
the algebraic growth law) is supported by recent experi-
ments [17,18]. The ratio L (1/w) /R(t) is proportional to
[In (w/wp)/In (t/to)]l/w if the droplet picture is used, ¥ is
some exponent, 0 < ¢ < d—1, { is a certain microscopic
characteristic unit of time. x;, and x7, are the real and
the imaginary parts of the equilibrium susceptibility. The
expressions (1, 2) were found when the relaxation is gov-
erned by thermal activation over a free-energy barrier B.
The barriers for annihilation and creation of the droplet
excitations are assumed to scale as B ~ ALY; A is a bar-
rier energy at T' < T,. The barriers have a broad energy
distribution. A droplet with B lasts for a time ¢ of order
of tgexp [B/(kpT)] where kg is the Boltzmann constant.
t is the rate of classical activation over energy barrier B.

After a time ¢ after quenching the typical linear
domain size of the system has accordingly grown to
R(t) ~ [(kpT/A(T))n (t/to)]l/w. In the ac suscepti-
bility measurements at angular frequency w, the ac
field excites droplets of length scales up to L (1/w) ~
(kT /A(T)) In (w/wo) |]1/w. Because in aging experi-
ments the elapsed time satisfies in general the relation
t > w1 [12] we have L (1/w) < R(t). These droplets have
walls which partly coincide with walls of the domain of
size R. The presence of such frozen-in domain walls in-
fluences the small length scale droplet excitations. Some
droplets which touch it can reduce their excitation gap,
compared with others in the bulk of domains. In the pres-
ence of domain walls at a typical distance R from each
other Fisher and Huse have found the free energy gap of
a droplet of size L in the following form [35]

qvw{g(éﬁe,L<R. )

with an effective stiffness constant ey [L/R] =

~y [1 - (L/R)d_‘g}7 v being the droplet stiffness con-

stant. Lg is a certain microscopic unit of length playing the
role of a short-distance cutoff; ¢, is a constant independent
of time and frequency which happens to be anomalously
small. So, within the droplet picture, aging proceeds by
coarsening of domain walls as usual phase ordering pro-
cesses. The domain wall serves as the frozen-in extended
defect for the droplets and reduces their stiffness constant
from 7 to veg. It is known that the susceptibility is in-
versely proportional to . It was derived, for example, for
the real part of x/(w,t) that [24]

’ ’ Ay -
¥t = xglo) (1- 27) (@
where Ay/y ~ (L(1/w)/R(t))*? with Ay = v — 7 [35).
The condition B8I;, <« 1, where I is the droplet
tunnelling rate and 8 = (kgT)~!, defines the clas-
sical regime, whereas in the quantum regime one has
BIr > 1 [36,37]. For the quantum droplet model de-

veloped in [36-38] L(1/w) ~ [(1/0) |ln(F0/w)|]1/d and

L(t) ~ [(1/0) |In (Fot)|]1/d, where I} is the microscopic
tunnelling rate and the coefficient ¢ has little variation
from droplet to droplet. Thus a logarithmic growth law
for the time dependent length scale L(t) of the droplet ex-
citations is assumed to hold. Instead of the thermal relax-
ation time t for a classical process, we use in our quantum
case the quantum tunnelling rate 'y, for a droplet of linear
size L. So the length scale L(t) growth is determined not
by the thermal activation over the free energy barriers be-
tween minima but by quantum fluctuations which cause
a droplet tunnelling through the barrier at rates that do
not vanish for 7' — 0. The fraction of droplets which are
quantum-mechanically active at 7' — 0 is proportional
to FL.

In general, quantum effects could change nonequilib-
rium dynamics in glassy phase at very low temperatures.

The paper is organized as follows. In the next section
we give the definitions and the main properties of the spin
glass droplet model. In Section 3 we give the linear re-
sponse formalism and the general expression for the ac
magnetic susceptibility. In Section 4 we present a sum-
mary of our results and conclusions.

2 The model and Hamiltonian

In this paper we use a phenomenological quantum droplet
model within the spin glass theory [36-38] (which does not
use the mean-field approximation) in order to describe the
nonequilibrium behavior of the magnetic dynamical sus-
ceptibility at very low (but finite) temperatures 7. We
use the quantum Hamiltonian for the short-range Ising
spin glass in a transverse field. This model Hamiltonian
may be appropriate for experimental systems such as
the dipolar magnet LiHo,Y;_,F4, proton glasses, alkali
halides with tunneling impurities and other quantum sys-
tems [9,36-38].

We shall be interested in the behavior at very low tem-
peratures in the ordered spin glass phase and ignore crit-
ical effects.

The droplet model describing the low-dimensional
short-range Ising spin glass is based on renormalization
group arguments [35,36]. In dimensions above the lower
critical dimension d; (usually in spin glass 2 < d; < 3) it
gives a low temperature spin-glass phase in zero magnetic
field. This phase differs significantly from the spin-glass
phase in the mean-field approximation of the Sherrington-
Kirkpatrick infinite-range spin-glass model [9]. In the
droplet model there are only two pure thermodynami-
cal states related to each other by a global spin flip. In
the presence of a magnetic field there is no phase transi-
tion. A droplet is an excited compact cluster in an ordered
state where all the spins are inverted. The natural scaling
ansatz for the droplet free energy e; (which is consid-
ered to be independent random variable) is €7, ~ L, with
L > {(T); ¢ is the correlation length, L is the length scale
of droplet and @ is the zero temperature thermal expo-
nent. One droplet consists of a number of spins of order
L%, Below d;, 6 < 0; above d; one has 6 > 0. The droplet
excitations have a broad distribution of their free energies
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with the probability distribution Pr,(er,)dey, of droplet free
energies at scale L for large L in a scaling form [4,6]

de €
Pr(er)der, = fy(T)LLGP (’y(TL)LG) , L —o00. ()

It is assumed that Pr(z — 0) > 0, P1(0) — Pr(x) ~ ¢
at © — 0; ¢ < 1. y(T) is the stiffness constant of the
domain wall on the boundary of the droplet which is of

order of the characteristic exchange 7 = (If]) Tat T =0
and vanishes for T' > T,. At positive temperatures the
droplet free energy will replace the droplet energy [35]
but for brevity we shall simply write droplet energy.

The Hamiltonian of the d-dimensional quantum Ising
spin glass in a transverse field is given by

H=-> T;58 -TI'> S
i,j i

(6)

where S; are the Pauli matrices for a spin at site ¢. I is
the strength of the transverse field and the sum in (6) is
performed over nearest neighbors. For I' = 0 the Hamil-
tonian (6) describes the d-dimensional classical Ising spin
glass. The interactions Z;; are independent random vari-

ables of mean zero and variance Z = (If) ? This model

describe, for example, the physics of the proton glasses,
the mixed betaine phosphate-phosphite [9]. The trans-
verse field may be interpreted as the frequency of the pro-
ton tunnelling. Finally, an experimental realization of the
quantum Ising spin glass is the dilute dipole coupled mag-
net LiHo,Y;_.F4 where quantum fluctuations are intro-
duced and controlled by means of a transverse magnetic
field [9]. The properties of model (6) in mean-field approx-
imation have been studied in many papers [6,9]. It was
found that there is a high-temperature critical behavior
at temperature T.(I") ~ Z, I' < Z and a low-temperature
critical behavior with the zero-temperature critical point
T.(Z) = 0, I.(0) = Z, where I is the critical value of I"
below which the spin-glass phase can exist. We suppose as
in our early papers [37,38] that a quantum system with
the Hamiltonian (6) has a true glass phase transition at
Ty #0.

One can use the Suzuki-Trotter formalism [36] to show
that the d-dimensional quantum mechanical system (6) is
equivalent to a classical statistical mechanical system in
(d + 1)-dimensions (the extra dimension is the imaginary
time) with the classical Hamiltonian

L, L,
Ha = AT Z ZIijSi,ij,k —Ir Z Z SikSik+1- (T)
k=1 (ij) k=1 i

Here the variables S; (= £1) denote classical Ising spins,
representing the z-component of the quantum spins at
site ¢ and imaginary time 7 = kA7 (the imaginary time
direction has been divided into L, time slices of width
AT). The calculation gives exp (Zr) = tanh (A7I"), with
ATL, = (kgpT)™! (here and throughout the paper we use
units where i = 1). Referring to the Hamiltonian (7) at

temperature T = 0, Thill and Huse [36] have assumed
that in each of the two ordered states (for I" < I'. and
T < Ty) for sufficiently low T" and an appropriate range of
length scales L, the quantum Hamiltonian (6) can be rep-
resented as low energy droplets (analogous to independent
quantum two-level systems in a structural glass) with the
Hamiltonian

H= % >3 (enSh, +ILSh,)

L Dp

(8)

where S7, and S7, are the Pauli matrices representing
the two states of the droplet. The sum is over all droplets
Dy, at length scale L and over all length scales L, and

= * dL
o). T

where Ly is a short-distance cutoff. €, is the droplet energy
which is the independent random variable. The droplet
length scale L is greater than or of the order of the corre-
lation length (. The quantity

(9)

Iy = Iyexp[—o L (10)
is the tunnelling rate for a droplet of linear size L, I being
the microscopic tunnelling rate; o is the surface tension
for the interface between the two droplet states, which is
approximately the same for all droplets. We will assume
that Iz is the same for all droplets of scale L [36]. The
Hamiltonian of a single droplet is the 2 x 2 matrix

1 (e It
2\ I —€g
with eigenvalues Ex = £\/e2 + I'?. E = 2|E4]| is the
energy difference between the two eigenvalues.
In the quantum droplet model of Thill and Huse [36]
the relative reduction of the Edwards-Anderson order pa-

rameter gpa(T) from its zero-T value gg4(0) is given for
6> 0and L*(T) > C by

(1)

1 qea(T) kT
qpa(T =0)  7L*(T)
knT 0/d
= (=0
v W4T/ (kpT))
(12)
where the crossover length scale is
1. Iy \?
L(T) = [ =1In =2 1
@ =(;mt) (13)

For droplets with L <« L*(T) and Iy, > kpT the exci-
tation energy /€7 + I'7 is always greater than kpT and
thermal fluctuations are therefore not essential at tem-
perature T'. These droplets behave quantum-mechanically
while larger droplets (L > L*(T)) have I, < kpT and
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behave classically. These large droplets (e;, < kgT, I, <
kpT) are thermally active and reduce gg 4. For 6 > 0 this
reduction is dominated by the smallest droplets. Below d
(0 < 0) the thermally-excited droplets disorder the system
reducing qg 4 to zero at any temperature.

In this paper we neglect droplet-droplet and droplet-
lattice interactions.

3 Linear response

We consider the time-dependent Hamiltonian H of the
quantum system in the form [46]

H=THo+H(t) = Ho — Ah(t) (14)
where 7:(0 is an unperturbed part describing the equilib-
rium system. We suppose that the external perturbation
H'(t) is in some sense small, with A being the linear op-
erator through which the external time varying force h(t)
couples to the system.

We evaluate quantum-mechanically the dynamical re-
sponse AB(t) = (B(t)) — (B)o to the force h(t) in terms
of the time-evolution operator U(t,#'); here B(t) is the
Heisenberg operator, B(t) = Ut(t,t")B(to)U(t,t'), while

(B)o is the equilibrium expectation value of B. Performing

a standard first-order perturbation expansion of U (t,t)
one gets

’

Ut t') ~ Uo(t,t’){i - %/t dt U] (t1,1)
X H/(tl)UO(tlat/)} (15)

where Uy (t,t') = exp [f%(t - t’)?rlo} and the sign { means

the conjugate value.
We consider a response functional of the form [46]

Bt ' t) = 1ﬁ<[14(to),l§(t,t’)]>o

— 16
i (16)
where (...)o denotes the thermal average with the density
matrix po = p(to), to being the time when the perturbat-
ing field is turned on.

Now we apply the aforementioned dynamical response

relations to a magnetic system. Then the response (B(t))

represents the induced magnetization M (t) and (B)g is
the equilibrium magnetization Mj. Let a small magnetic
oscillating field

h(t) = hexpliwt] (17)

be applied in z-direction where h and w are the amplitude
and the angular frequency of ac field. Then we look for
the induced magnetization in the z-direction.

In order to observe a history dependence and aging
in a spin glass, the sample is quenched infinitely fast at
zero dc magnetic field from a temperature 1 > Ty to the

temperature 77 < T, which is reached at the time ¢ = 0.
At this moment a very small external magnetic oscillating
field h(t) is applied to measure the ac susceptibility of the
sample. The evolution continues in isothermal conditions
and Y. is measured at fixed frequency w as a function of
the time t elapsed since the sample reached the tempera-
ture 77.

The system is probed at a time ¢ after the quench end
(the “age”). Using linear response theory the magnetiza-
tion of the magnetic system is [25]

M(t)— My = /Otx(t,tl)h(tl)dtl = /Otx(t,tt’)h(tt’)dt’

(18)
where x(t,t — t') is the dynamical magnetic susceptibil-
ity determining the magnetic response at time ¢ to a unit
magnetic field impulse at time (t—t'). The nonequilibrium
processes are probed by the low-frequency ac susceptibil-
ity measurements. The frequency dependent ac suscepti-
bility is measured by applying a ac magnetic field h(t) at
time ¢ = 0. Then x(w,t) may be found by the Fourier
transform of the magnetization over a time segment t,,
(tm ~ 27/w) centered around ¢ [25,41]

1 [ o
x(w,t) = —/ dt" et
t

[ 1’771,
m 2

t//
% / dtlx(t”,t” o t/)eiw(t —t ). (19)
0

If the magnetic response function varies little over the time
segment t,, the susceptibility x(w,t) will be equal to [25]

t
x(w,t) = / dt'x(t,t —t')e ™",
0

(20)

The in-phase component of the ac susceptibility is
X' (w,t) = Rex(wt), while the out-of-phase component is
X" (w,t) = Imx(wt).

We consider the behavior of the magnetic droplet sys-
tem described by the Hamiltonian (8) under an applied ac
field h(t) in the quantum regime (I'z, > kpT) when the
droplet excitation energy /€2 + I'7 is greater than kg7
In the calculations presented below, we assume that 6 > 0
(d > d;). There is a complicated classical-to-quantum
crossover depending on the temperature T, the frequency
of the ac field w and the length scale L. According to [36],
the dynamical crossover length is determined from the
condition Fgl =t,i.e.

1
Liyu(T) ~ (SheT) ™" (21)
The system behaves presumably classically or quantum-
mechanically when the dominant length scale L is above
or below L3 for fixed frequency w. When the droplets
behave quantum-mechanically they have a characteristic
rate, the Rabi frequency, which is of order I.

Following the aforementioned quantum droplet theory
with the model Hamiltonian (8) and relating it to do-
main growth ideas, we calculate the ac susceptibility using
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the dynamical response functional including the first- and
second-order linear response functions [46]. The contribu-
tion of a single droplet to the ac susceptibility up to some
factor ~ ¢% ,L?? is

—Xp, (w=0) ~ —tanh (Bar,/2) sin® @ﬁ
(7a2 — 10w?) cos(wt)
(@ — oD@ — 1)
B cos(aLt)}

w(a? — 4w?) a? —w?

) 3(a% + 2w?) sin(wt)
(af — w?)(af — 4w?)

XDy, (Wa t)

— htanh (ﬂaL/Q)cosgpsin2 cp({

_ 3ag sin(wt) sin(art) + 6w cos(wt) cos(art)

3ay, cos(wt) sin(apt) — 6w sin(wt) cos(art)
w(a? — 4w?)

3sin(arpt)

+ w(a? — w?) })’
L
where ay, = \/€2 + I'2,sing = I’ /ar, cosp = €1 /ar, and
XD, (w = 0) is the static susceptibility of the droplet Dy,.
The expression (22) was obtained for low frequencies sat-
isfying the condition wt > 1 (and I'y, < w) because this
condition is used to observe nonstationary dynamics in x4c
measurements [12]. Now we have to average the suscepti-
bility (22) over droplet energies e;, and over droplet length
scales L. In order to average over droplet energies we use
the distribution Py, (er) (5). In this distribution we assume
¢ = 0. We approximate in (22) tanh(8y/€3 + I'7/2) ~ 1
and integrate as shown in references [36-38]. Upon averag-
ing over the droplet energy, the contribution of all droplets
of the system to the real part of susceptibility is obtained
in the following form

(22)

I7
yLOw\/w? — T?
w+ —I? lpr—h/w2 F2bL>
w—/w?—1T? wpr, — \Jw? — I'?b,

sin(wt) <;si (but) +si(t (b — w)) +si(t(br +w))

Xz (w,t) = Xp(w =0) ~

x(l
2

L
~LOw3

+ Zsi (t(br, — 2w)) + %si (t(br + 2W))>

+ cos(wt) <— §ci (t(bp—2w))+ §ci (t(bp+2w))—1In bt w
4 4 L — W
3. br+2w . dSw
lenbL_wa 1((bL7w))+C1(t(bL+w))+E
3w . 2w .
— —cos(brt) —3wtsi (brt) | — — cos(brt) —2wtsi (brt) | .
bL bL
(23)

Here x(w = 0) is the static susceptibility of the system

of droplets of size L, by, = \/p% +I%, pr = 2w + I,

si(«) is the sine integral and ci(«) is the cosine integral.
Further we average expression (23) over length scales L.
While integrating over L we see that the real part of
the susceptibility is dominated by droplets of length scale
L1 ~ [(1/0)In(Iy/w)]*4. Ly is the natural length scale of
the problem when I';, ~ w and represents the lower limit
of integration over L. The upper limit of integration was
taken as Lo ~ [(1/0)In(toIp)]"/?. The average over L fi-
nally leads to the following expression for the real part of
the ac susceptibility of the droplet system

X (w,t) — X' (w=0) ~

2 42 o [0 I
0 (2 _9) (2 2 om0
'yw2<(nfg )(U)dd G 7,2 |In—

I, w?
+—0(21
O

[v4
+ 300 6myia1G [Q 6

w4

a<2(20)%1d1G [1 - g 2 ' ol
I2 0 I
40)77 141G (1 - =, 4 [In =2

+ 10 (40)8 dG[ ’ ‘ w]))
{173 | 17 .

+ b} ((E <E sin(3wt) — 3 sin(2wt)

_ % sin(wt) cos(2wt)> + cos(wt) <5 In3— )

T
|

- 20 cos(wt) < - d71(20)%71 <G [1 , 2 In(tIo)]

)

where Gla, z] is the incomplete gamma function. This is
the main result of our paper.

If we use the asymptotic representation for the incom-
plete gamma function for large values of the its second
argument we obtain, for example, for the difference of two
incomplete gamma functions

0 I
- 1—-,2|ln— 24
X G[ 7 ‘ » (24)

G {1 - g ,2 |1n(tl“0)|} -G {1 - g ,2 |1nw_1fo|]

2

Y R R A I
~ [In(w™"I7)| 1 (wt)2< In(tIo) ) Iy
(25)

We observe some similarity with expression (5.7) in refer-
ence [35] in conformity with our quantum regime.

In the derivation of equation (24) we made the follow-
ing approximations: (1) si(bpt) ~ —(prt)~tcos(prt); (2)
ci(bpt) =~ (prt) " tsin(prt); (3) by ~ 2w + I
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We also evaluated numerically the average over L of
the expression (23) without these approximations and ob-
tained curves for the susceptibility which are very simi-
lar as those obtained from (24) (the parameter values are
given below).

The susceptibility x'(w,t) depends on the external ac
magnetic field and on several parameters of the droplet
system. Among them, we mention the kind of distribution
function Pr(er,), and the droplet microscopic tunnelling
rate Iy.

The expression (24) consists of time-independent
terms which describe the simple oscillations with fre-
quency w, and terms which depend on time ¢ and deter-
mine the nonstationary nonequilibrium dynamics of the
droplet system. So, the real part of the ac susceptibility
can be represented approximately as a sum of the station-
ary part (Xsp) and nonstationary part (xygr)

X' (w,t) ~ X1 + XnsT - (26)

This separation is found to be exact in mean field models.

For a numerical evaluation of the expression (24) we
take the following values of the parameters: d = 3, 0 =
0.5, v = 10715, Iy = 108, 10'°, 102, h = 1, 0 = 10712,
t =0-+100, w = 0.05, 0.1.

In Figure 1 we show the ¢-dependence of the real part
Xngr of the ac susceptibility of the droplet system. Here
wt is comparable or more than unity, so one may observe
nonstationary dynamics and the aging regime [12]. In Fig-
ure la we show the slow dynamics at Iy = 10°, w = 0.05,
0.1 and £ = 0+25. At short elapsed times ¢ the curve grows
(very quickly) up to some finite value and then falls down.
At longer times t the ac susceptibility shows a stationary
behavior. In Figure 1b and Figure lc the ¢-dependence
of xvgr(w,t) is shown for longer times: (b) ¢t = 0 + 50;
(¢) t = 0+-100. The time interval covers two decades of the
elapsed time t. We see that as frequency is increased the
susceptibility magnitude decreases and the slow dynamics
is suppressed at higher frequency. In Figures 1 we see the
influence of the frequency w and the elapsed time ¢ on the
susceptibility.

In Figure 2 we give the time dependence of x'y g7 (w, )
at different values of the quantum parameter Iy (=
108, 10'°, 10'2) giving the microscopic tunnelling rate.
We observe a small effect of Iy on the susceptibility
Xngr(w,t). With increasing values of I the magnitude
of the susceptibility slightly decreases at small times ¢, i.e.
the quantum fluctuations in some sense lead to a decrease
of the susceptibility in quantum regime in the spin glass
phase.

4 Discussion and conclusion

The main aim of this paper is to show the role of quan-
tum fluctuations in the behavior of the ac susceptibility
of our quantum system. In the paper we have investigated
the low temperature nonequilibrium dynamical behavior
of the magnetic ac susceptibility in d-dimensional Ising
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Fig. 1. The in-phase susceptibility x'(w,t) (nonstationary
part) as a function of time ¢ for quantum parameter Iy, =
10® and fixed values of frequency w = 0.05, 0.1: (a) w =
0.05, 0.1;t = 0 =+ 25; (b) w = 0.05,0.1; ¢t = 0+ 50; (¢) w
0.05, 0.1; t = 0 =+ 100.
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X (w, t) = ygr (arb. units)

Iy= 108

'. Ty = 10"

|| —— —— Tp=1012

|

?

|

i

|

'!','lI
0 10 20 30 40 50

t(s)

Fig. 2. The in-phase susceptibility x’(w,t) (nonstationary part) as a function of time t for frequency w = 0.1 and for three

values of quantum parameter Iy = 108, Iy = 10'°, I = 10*2.

spin glass with short-range interactions between spins in
a transverse field in terms of the phenomenological droplet
model. The real part of the low-frequency ac susceptibility
X' (w, ) as a function of the time ¢ elapsed from the initial
quench up to the the measurement and of the frequency
w of the external ac magnetic field is calculated. We dis-
play the nonequilibrium dynamics for different low val-
ues of w at constant temperature in the spin glass phase.
The real part of the ac magnetic susceptibility x'(w,t)
of the droplet system at very low temperatures (quantum
regime) has two time regions in which the time evolution is
of a different nature. At short elapsed times (t < tqpqr) We
observe a nonequilibrium dynamical behavior, manifest in
the fast decay of x/(w, t) at low frequency and at constant
temperature T'. t.pq. is Some characteristic time which de-
fines the two regimes with stationary dynamics of x'(w, t)
and with nonstationary one. At longer times ¢ (¢t > tchar)
the curve becomes a simple periodic function oscillating
around some constant value (stationary process).

We have shown that the quantum fluctuations have
slight influence on the dynamical susceptibility of the
droplet system at very low temperatures. Their increase
leads to a small decrease of the susceptibility magnitude. If
the frequency of the ac field increases the nonequilibrium
dynamics is suppressed. So, the response of the droplet
system to an external perturbing field weakly depends on
the thermal history.

In [40] it was shown that the behavior of the response
function R(t,%,) demonstrates the existence of the sta-
tionary and aging regimes in quantum systems. The theo-
retical curve (Fig. 2 in [40]) R(t,t,) was given as function
of 7 (1 =t —ty), with 7 € [0,50] and ¢, = 2.5, 5, 10, 20
and 40 (t,, is the waiting time). For 7 < 7Tepar (Tchar 18
some characteristic time) a stationary regime was found,
whereas for 7 > 7.p4 the dynamics is nonstationary. In

reference [40] it is shown that quantum fluctuations in
quantum glassy systems depress the phase transition tem-
perature, in a glassy phase aging survives the quantum
fluctuations and the quantum fluctuation-dissipation the-
orem is modified due to quantum fluctuations. In refer-
ence [39] it is shown that in the aging regime of quantum
spin glasses of rotors all terms in the dynamical equa-
tions governing the time evolution of the spin response
and the correlation function that arise solely from quan-
tum effects are irrelevant at long times. The quantum ef-
fects enter only through the renormalization of the dy-
namical equations parameters [43]. In reference [47] the
nonequilibrium dynamics of a quantum Heisenberg spin
glass with a nontrivial SU(NN) spin algebra is considered.
In this paper the numerical evidence for aging and for a
generalized fluctuation-dissipation theorem in the aging
regime is given. The behavior of the spin response as a
function of 7 (7 =t —t,,) is similar to the behavior of the
dynamic susceptibility in our paper. In reference [47] it is
shown that the aging regime is not affected by quantum
fluctuations and the quantum system behaves classically
in its slow evolution.

As far as we know there are no experiments on quan-
tum spin glasses. In references [18,24,25] experimental
data on x'(w,t) in classical spin glasses are presented.
Among them, Svedlindh et al. [25] have investigated the
behavior of x’(w, t) and x” (w, t) and have found that decay
is close to a logarithmic one, Shins et al. [24] have observed
that x'(w,t) decreases with time in a nearly logarithmic
way, whereas in reference [18] it was found for x'(w,t) a
behavior which resembles our curves in Figures 1. So, in
the aging regime a slow monotonous decay of x'(w,t) was
observed. In our quantum system at very low T we can-
not find agreement with these data because classical and
quantum spin glasses have in general different behavior.
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Thus, we have found the nonequilibrium low-frequency
dynamical behavior of the ac susceptibility at constant
temperature for the droplet system in quantum regime
(I', > kpT) in the spin glass phase. For small times ¢ the
magnetic ac susceptibility depends both on the frequency
of the ac magnetic field w and on the time ¢ elapsed since
the sample reached the temperature Ty (Th < T,). We
do not find a slow continue decrease of the amplitude of
X' (w,t) as a function of ¢ at long times.

We may compare our data with experimental ones in
classical spin glasses [18,24,25] only very approximately
because in the experiments on x'(w,t) and in our paper
qualitatively different spin-glass systems are considered.
We observe a qualitatively similar dynamical behavior of
X'(w,t) in the range of the small times elapsed since the
quench.

This work is partially supported by the RBRF under Grant
01-02-16368.
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